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Spin-Spin Correlation Function in the 
Two-Dimensional Ising Model with Linear Defects. 
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The dispersion expansion for the spin correlation function in the two-dimen- 
sional Ising model with linear defects above Tc is derived. The asymptotic 
behavior is computed by a steepest descent analysis. The lattice is divided into 
four domains with different asymptotic behaviors. In particular, the correlation 
length inside certain domains is a function of the defect. 
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1. INTRODUCTION 

Since the famous solution of Onsager  (1) demonst ra t ing exactly that  there is 
a phase transit ion in the two-dimensional  Ising model,  it has been natural  
to divide the discussion of such systems into two parts: the low-tem- 
perature and the high- temperature  phases. There is also the case at the 
critical temperature,  which requires different techniques and will not  be 
considered here. 

It was shown by Kramers  and Wannier  (2) that  the high- and low-tem- 
perature phases are related by a dual t ransformation,  namely, a lattice with 
horizontal  and vertical bonds  E1/kT  and E 2 / k T  are t ransformed into the 
dual lattice with bonds  (E2/kT)* and (EI /kT)* ,  satisfying 

�9 h2E'  (2ei' * 
sm ~-~s inh  \ k T J  = 1, i =  1, 2 (1.1) 
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The critical temperature of the Onsager Ising lattice can be obtained by 
requiring that the critical point be the self-dual point, 

2E1 2E2 
sinh - -  sinh = 1 (1.2) 

k T  c kT~ 

In part I of this work (3) we studied an Ising model that is not self-dual; 
nevertheless, it has an order-disorder phase transition at the same critical 
temperature as in Onsager's lattice given above. The model studied is a 
defect model, in which the nearest neighbor interaction in the center rows 
on the two-dimensional lattice is modified, as shown in Fig. 1 in paper I; 
the boundary conditions are periodic for the pure-phase case. (4) This model 
contains two special cases r which are dual to one another, the line-defect 
model (E~ ~ ~ )  and the ladder-defect model (E'I = El). 

In I, we computed the spin-spin correlation function in the low-tem- 
perature regime. In this paper, we study the spin-spin correlation in the 
high-temperature regime. 

The dispersion expansion for the spin-spin correlation function below 
Tc was given in I; it splits into the case where the spins are on the same 
side of the defect and the case where they are on opposite sides. It was 
found that in the scaling limit, the defect couplings E~ and E~ appear in the 
correlation only in the defect parameter ~, 

t ~  r = sgn( T -  To) tanh [2(2E'1 - E1 - E 2  )/kTc ] (1.3) 

The contours of r in E'I E~ space are shown in Fig. 2 in paper I for E1 = 
E2 ~ 0.44 in units of kTc.  The function ~ is antisymmetric if it is reflected 
with respect to the point E~ = E1/2, E~ = 0, which is marked with an open 
circle in the figure. The general tendency of ~, which takes values between 
- 1  and 1, is that it rises sharply near zero for increasing E'I and its 
magnitude drops sharply near 1 for increasing lEVI. At the line E~=0 ,  
which is the half-plane case, ~ is discontinuous, depending on whether the 
limit is approached ferromagnetically or antiferromagnetically. The pure 
system is at the solid circle, which is embedded in a smooth curve; 
therefore an interesting phenomenon is that for any system with nonzero 
value of E~, say, we can find an E'I to cancel ~, so that it is equivalent to 
the pure system. 

We also computed the asymptotic decay in I for large separations 
between the spins and from the defect. It was found that if ~ > 0 the 
correlation length in certain domains becomes defect dependent; fix one 
spin ayl,O; then the domain for the second spin ay2, x where this occurs is 
defined by the defect, a straight line, and a parabola given by 



Spin Correlation in 2D Ising Model 817 

Y2 + r z - l x  = Yl (1.4) 

(rx - gY2 + gYl) 2 = 4zyl(gx + rY2) (1.5) 

where g2 = 1 - v 2. This is shown in Fig. 3 in paper I. 
These features are shared by the high-temperature case. From the sign 

factor in (1.3), it is clear that the effects of defects in the two phases are 
opposite. The explicit results in this paper are given in (3.5) and (4.2) for 
the dispersion expansion on the lattice and in the scaling limit, and in 
(4.4)-(4.10) for the asymptotic behavior. We also give the dispersion 
expansion for the case for one spin on the defect for the line-defect model 
in Appendix C. 

2. F O R M U L A T I O N  OF THE PROBLEM 

In ref. 6 it was shown, using the transfer matrix method of Onsager 
and Kaufman, (7) that the spin-spin correlation function is expressed in 
terms of a block Toeplitz matrix 

A~ A12 "] (2.1) 
(O'/.00"m,n) = det v2 \ A21 Ao+A22J 

in which the submatrices are 2 x 2 block Toeplitz matrices given below: 

(Ao)~j=~-~f dOe -i~k J)O(_c~o)_ l (2.2) 

where the function C(0 ) is defined in (I.A.1); and 

2 

(Apq)kJ= 2 (A~pq)kJ (2.3a) 
S=I  

(A~q)~j=~-~ _ d O e -i(k J)~Xpq(0 ) bpq(O) (2.3b) 
~z 

with XSpq(O) a function and bpq(O) a 2 x 2 matrix given in (I.A.4) and (I.2.7), 
respectively; and p, q = 1, 2 and k, j = 0,..., oo. 

In ref. 3, we calculated (2.1) by expanding the determinant around Ao, 
which involves explicit use of det(Ao) and A o 1. That procedure was prac- 
tical for T <  T c because the function C(0) satisfies the condition necessary 
to evaluate det(Ao) and Ao 1 from Sze~o's theorem and Wiener-Hopf 
method, ~8) namely, ln C(0) is continuous and periodic. For T>T~, 
however, C(0) does not satisfy the condition; it is C(0) - eiOC(0) that does. 
A known method (8) of attack in this case is to devise a comparison matrix 
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containing C(r This comparison matrix is such that the procedure 
described in I can be applied and the ratio with the original one can be 
calculated. 

Denote the matrix on the right-hand side of (2.1) as A and the com- 
parison matrix yet to be defined as A. The guideline is to construct an 
containing a submatrix -40 analogous to Ao, but with C(~b) replacing C(~b) 
in (2.2). This should be done in such a way that we can evaluate 
det(A )/det(A). 

We can achieve the above by defining A as that obtained through 
adding a row and a column to A. This gives 

//A 0 ,..[- All  lz~12 x k 
= ~ 321 / (2.4) 30 + A2a/ 

where, similar to those in A, 

('4o)kJ = ~-~ f ~_. dOe-i(k-J)~'(  __ ~(~)-- 1 0  C~q~ )) (2.5) 

and 

with 

2 
= (Apq)k j (2.6a) 

s=l 

( Apq)k j d(9 e- i (k-  J)C~XSpq( ~ ) -s = - -  bpq(~) (2.6b) 

(_ 1)p, (_iC+,) [-(--1) qs ( iC : l ) ,  C + ]  (2.7) 

The functions C+ come from the canonical factorization of C; explicitly, 

C+ (~b)= C ( - r  - l =  (1 - cq eir m (1 -az le i~  a/2 (2.8) 

where ~1 and %, defined in (I.A.2), are functions of tanh(Ej/kT), j=  1, 2, 
The above-T c spin correlation will be calculated by multiplying and 

dividing (2.1) by det(A), 

(at.oam,, > = (det ])1/2 (det A/det z~) 1/2 (2.9) 

The calculation for det(A) is completely analogous to that for det(A) in I, 
and the result is given in Appendix A. Here we concentrate on the ratio, 
which has no analog in I. 
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Since deleting the first row and column of A gives A, the ratio of their 
determinants is, by Jacobi's theorem, (8) 

(O'l, O0"m,n) = (det A) m J(A 1), t (2.10) 

in which the subscript asterisk on the right-hand side represents the upper 
leftmost element in the upper right quadrant of the matrix. 

We will compute (,~-1), in the next section. The computation bears 
some similarity with that in I, because we again make an expansion around 
A0, using the fact that we know ,4o 1. More precisely, what we need is its 
Fourier transform: 

,..~-" (301)kjei(kr162 5+(r 5- (0)  
1 - - e  i ( r  (2.11) 

k , j=O 

with e ~ 0 + and 

5+( r  C+(r -1 ' C_(r 

Formulas (2.11) and (2.12) are completely analogous to the below-Tc case. 
In addition, we need 

(No 1)k0 e iko ._= d + (~,) ) 

~=o (2.13) 

(Aol)oj e -ij~ = --iayS- (O) 
j=O 

where ay is the Pauli matrix. The need for (2.13) arises in the calculation of  
( X - l ) , ,  because the expression is no longer cyclic as in the low-tem- 
perature case, but has ends at the k = j = 0 block. 

. DISPERSION EXPANSION 

As outlined above, we calculate ( X - l ) ,  by separating out the Ao part 
to make an expansion for X- l ;  we use the identity 

J~- l=( l+ /~)  1(Ao1@I2)= ~, ( - -1)k/~ ' (Aol |  (3.1) 
k=0 

where I2 is the two by two unit matrix, and 

(Ao 1~411 1o 1.A 12~ 
}~ = \~O 1~21 Z~O 1322 ,] (3.2) 
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To get the desired element of (3.1), we first c o m p u t e / ~  in terms of 210 and 
Apq. It is straightforward to show that 

[ / ~ ( 3 o  1 x 12)], 

k 
= Z Z II ,j),,2j --1 ,-2+ 2,-2+ ~, pj ~ ~,,2j](Ao ),~,o (3.3) 

{ps,sJ} {n~} j=l  

where the summations are over p j =  1, 2, j =  1, 2 ..... k - 1 ,  with po = 1, 
Pk = 2; sj = 1, 2, j = 1, 2 ..... k; and over ng= 0,..., 0% i = 1,..., 2k, with no = 0. 

Substituting (2.6) in (3.3), and using Eqs. (2.11) and (2.13), we are led 
to multiple integrals containing expressions of the form 

(10) (1, 0 ) ( - i f f y )  U [ a (0j)b/)_~pj(Oj) a+(~ j ) ]  (3.4) 
j = l  

The explicit formulas for the 2 x 2 matrices ~i-+(q~) and TM bpq(O ) a r e  given in 
(2.12) and (2.7), respectively; and (3.4) can be easily computed. With the 
above, the dispersion expansion is obtained. 

Thus the desired expansion is the following: 

<(Yl, OfTm, n> = (det lzl) 1/2 2 2 dq~l "' ' d~bk 
k 1 {pj,sj} ' - ~  

X /~;11(+1 ) K;llS~2(~l, ~2) Kp2p3(q~2,-s2s' ~3) . . .  K;k_12(+ k - s k - t s k  1, ~k )  

(3.5a) 

where the summations over pj and sj are those following (3.3); the 
integrand is reduced to/4~(~b~) if k -- 1; and the kernel is given by 

s, . ; q , O , [  
KSpq((9,0)= 1 _ei(~-o+ie) 1-- ( - -1)  p(s+')C+C (~b) ~++ (0) (3.5b) 

and 

/7;( ,k)=i(-1)sxb(,k) c_(4,) c+(O) ' (3.5c) 

4. C O N T I N U U M  L I M I T  A N D  A S Y M P T O T I C  B E H A V I O R S  

The critical temperature Tc for the defect system is the same as for its 
homogeneous special case, and is given by (1.2). We consider the scaling 
limit, which is the limit for T--+ To, the correlation length ~ --+ oo, and the 
scaled distance r ~ R/~ is kept fixed. 

Let ~h and iv be the horizontal and vertical correlation lengths, respec- 
tively, in the pure system. Near To, they diverge linearly with T as in 
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(I.4.7). Define the scaled distance, x, the y's, and the scaled integration 
variable w as follows: 

n Ill m m - - I  m + l  w 
x=~h Y' ~ '  Y~ ' Y= ~ f' ~ ~ ~h 

(4.1) 

It can be shown that the scaling form of (3.5) is 

lim (ar, o ffrn. n )( 1 - ~j )(det 3 )  - I/2 

k=, ~ Z dw~.., dw~ 
{ pj,sj } - ~ oo 

xff~-{(wl)L-Spl,~2(wl'e w2) E'22s33(w2'p p w3) " " "/',kp~ l"klw~2~ k - l ,  w~) 

s Zpq~ W, p)  = --rtpq(P ) (1 dt- p2)l/2 - ( - 1 ) p ( s  + t) (1 -~w2) 1/2 
(1 +/92) 1/2 W - -  p + ie 

f;(w) = - ( -  I )  s Y~,(w)(1 + w~) -~/~ 

(4.2a) 

(4.2b) 

(4.2c) 

where the function Ypq(W), coming from scaling X~q(~b), is given in (I.A.12), 
and the constant ~1 is given in (I.A.2). Since this reduces to that of the pure 
system (9) and the convergence problem there has been investigated, (~~ our 
results should be valid for a range of parameters. 

Next we find the asymptotic behavior for (4.2) in the limit Yl, Y2, and 
x--* oo. In the pure case this is 

(aoO" r ) = e -'/(27tr) t/2 (4.3) 

Note that we have absorbed a renormalization factor _~2, the disorder 
expectation, in the left-hand side. For  the defect model, the correlation 
function below is renormalized by the local value M I M  m. 

Equation (4.3) is of the Ornstein-Zernike form, In) since there is no 
special symmetry to destroy the OZ behavior as in the low-temperature 
case. Although there is this basic difference between the low- and high-tem- 
perature phases, the main features peculiar to the defect system are quite 
similar. These include the very different behaviors for the l < 0 < m and 0 < 
l < m cases and the appearance of defect-dependent correlation lengths. 

The defect strength in the scaling limit is defined as 

= s g n ( T -  Te) tanh [2(2E'1 - E 1 - -  E ~ * ) / k T c ]  (4.4) 

where the asterisk denotes the dual in the sense of (1.1). 
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Let 

(%,o%2,x)~ = Z(r ,  f, Y)(ao~r )o + ~g,(r, f, y) (4.5) 

In the pure limit, v = 0  and f o ( ' " ) = l ;  in general, f~ and g~ are the 
following: 

1. for y ~ 4 . 0 ~ y 2 ,  

f~(r, ~, y) = f y / ( y  - rr) (4.6) 

g~(r, ?, y) = O(z - y/r) exp( - yr - x~) (4.7) 

2. for O~ y~,~ y2, 

f~(r, ?, y ) =  1 (4.8) 

x e x p ( - ? )  r e x p ( - r - 2 y l )  
g~(r, Y, y ) =  - -  - -  ( l - z )  ' - -  

37 -- t='C (2rCf) t/2 r + y 2rc(2y I )3/2 r m 

+ O ( z - ~ ) e x p ( - y ~ - x ~ )  (4.9) 

where O(x) is the step function, and 

r 2 = x 2 + y  2, ?2=x2+)32, f 2 = l - z 2  (4.10) 

The above result is obtained by a steepest descent analysis on the 
leading integrals in the expansion (4.2); all the other terms are exponen- 
tially smaller. The factor det(A), being analogous to the low-temperature 
case, has the asymptotic behavior 

(det A) 1/2 ~ MtMm[1  + O(e 2~)] (4.11) 

Hence, it does not contribute to the leading exponential decay. The steepest 
descent analysis is similar to that shown in Appendix B of I, and is omitted 
here. 

The terms containing defect-dependent correlation lengths (4.7) and 
(4.9) dominate when the O function is one. The conditions for this to occur 
is the same as in the low-temperature case, and is shown in Fig. 3 in 
paper I. 

There is also the situation where one spin is on the defects. Although 
this case is contained in the dispersion expansions derived here and in I if 
the proper limit is taken, it has not been considered asymptotically because 
it is necessary to require both Yl and Y2 large, in order to reduce the expan- 
sions to a finite number of terms. In Appendix C we derive dispersion 
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expansions for this special case in the line-defect model for both T< Tc and 
T>  To. Those expansions are suitable for asymptotic analysis. It is 
reasonable to expect that by replacing the defect strength there by the 
general ~ of (4.4) in the scaling limit, the result should be valid for the more 
general linear-defect model considered in this paper. 

The study of correlation functions at criticality has drawn much atten- 
tion due to its connection with conformal algebra. (12) The dispersion 
expansions diverge at criticality, as the scaled distances approach zero. 
However, it is known that for the pure (9A3) and the half-plane (~4) models, 
the dispersion expansions can be shown to satisfy nonlinear differential 
equations; the critical correlations are then obtainable from studying the 
nonlinear equations. A preliminary attempt to find if such equations exist 
for the defect model, following the method of ref. 13, excludes the 
possibility of a simple extension from the pure model. 

APPENDIX A. EXPANSIONS FOR DET(A) 

Here we give the expansions for (det 3 )  1/2 on the lattice and in the 
scaling limit. The matrix 3, defined in (2.4)-(2.7), is identical with matrix A 
if we let C(~b) ~ C(~b) in A. We can therefore write down the expansions, 
using the below-To result, without much effort. 

On the lattice, 

(det-4)~/2=21~r2exp[ - ~ I ( - I )  t ~ 
k=l  {pj ,sj}  r~ - -~  

- ] • K'2,~(~1, ~) K ~ ( ~ ,  ~) . . -K~,(~,  ~l)j (A.I) 

In the scaling limit, 

(detA)l/2=M'29Imexp - ~ 2-k -~n f ~176 dw,. . ,  oo dwk 
k=2 {pj, sj} ' --oo oo 

X ffaslS2plP2 (W1 ' W2) LS2S3p2p3 (W2, w3)""" L~l(w~'  wl)] (A.2) 

The summations are over p j=  1, 2, sj= 1, 2, j =  1, 2,..., k, except that the 
terms with Pl = P2 . . . . .  Pk are excluded in (A.2); and K;q is given in 
(3.5b) and/2~ in (4.2b). 
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A P P E N D I X  B. RELATION W I T H  G E N E R A T I N G  F U N C T I O N S  

In this paper and in paper I, we start by presenting the spin-spin 
correlation function as the determinant of the infinite matrix given in 
(2.1) (2.3). Those formulas come from a more general expression valid for 
layered Ising models, namely 

( G(l, llklj, G(l, m)k,i, ~ (B.I) 
((Tl'O(Tm'n) = detl/2 -Gr(l, m)k2 j  I G(m, m)k2J2/ 

where kl,  Jl = - ~  ..... - 1, 0 and k 2, J2 = - ~  ..... 2n - 1, 2n. The generating 
function G(l, rn)gj is defined in terms of the row-to-row transfer matrices Ti 
and the Clifford operators 7i: 

2i 1/2 1/2 T1/2~) T 1 / 2 T  G(I, m)kj = t ~  tr(-..  T21 1 T2I ])k T21 T21+ 1 ' ' "  T2m 1 --2m I j  --2m ~t 2m + 1 " " )  

(B.2) 

where T is the ordered product of all transfer matrices. 
The generating function for the linear-defect model has been computed 

in ref. 6. It was shown to have a 2 x 2 block Toeplitz form. Let [-k, j ]  
denote the block 

(2k+ 1, 2 j+  1) (2k+ 1, 2 j+  2) 
(B.3) 

(2k+ 2, 2 j+  I ) ( 2 k +  2, 2 j+  2) 

The generating function has the form 

G(l, m)Ek, jl =~-~ d~) e-i(k-J)~G(l, m) 

with G(l, m) a 2 x 2 matrix independent of k and j. 

(B.4) 

The formulas (2.1)-(2.3) arise from (B.1) by a substitution of the 
explicit expressions for the generating functions from ref. 6, and by a 
rearrangement of column and row indices. Specifically, the relation between 
the generating functions and the matrices in (2.1)-(2.3) is given by 

(Ao+All)kj=G(l,l)[-g-1, j 1] 

(Ao + a22)k j  = G(m, m)[_ k_ 1, j 1] (B.5) 
(A12)kj=G( l, m ) E - k - 1 , - j + n  13 

(Azl)kj = -- [(A12)+k] T 

The ranges for the indices k and j are thus changed from those in (B.1) to 
the more convenient [0, ~ ] uniformly. 
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A P P E N D I X  C. A S P E C I A L  CASE 

The asymptotic behaviors computed in Section 4 for T >  Tc and in 
Section 5 of I for T <  T c clearly do not include the important case in which 
one spin is on the defect line while the other is far away. The case where 
both spins are on the defect line has been computed (s) for the line-defect 
model. The line-defect model is the special case where E~ = oo and the 
defect rows collapse into one line with coupling 2E'1. This model is par- 
ticularly symmetric for the one-spin-on-defect case, and offers the 
possibility to derive the dispersion expansions in a unique form suitable for 
asymptotic analysis. Below we show the expansion for T <  T,. and then for 
T>Tc. 

The guideline in making the expansion is to separate out the part of 
the matrix that can be inverted. This invertible matrix is A0 for T <  Tc and 
-~o for T >  To. In the special case where E~ = c~ and 1 = 0, it turns out that 
Ao+AI1 of (2.1) is invertible for T <  T,. 

Restricted to the special case, let 

(~ro.o~,,,~)=detl/2 (Al + A21 A2 A12+ A22J~ (C.1) 

Before giving the submatrices explicitly, we explain their connection with 
those in Appendix B. The submatrix A 2 is the same as A o in (2.2); A 12, A2~, 
and Az2 are the same as in (2.1) restricted to this special case; A H in (C.1) 
is zero, because we have grouped the whole block into AI and have kept 
the null matrix only for notational convenience; finally, the upper left 
quadrant, when evaluated in this special case, can be expressed in the form 
of (2.2) with C(~b) replaced by K(~b). 

The function (s) K(~b) will be given below; here we emphasize that, like 
C(6,), it satisfies the condition that In K(~b) is continuous and periodic and 
hence its determinant and inverse are calculable; therefore it has a 
canonical factorization K(~b)=K+(~b)K_(~b). This function should not be 
confused with the kernel Kpq(~b, 0) in the dispersion expansion. 

The submatrices in (C.1) are of block Toeplitz form, 

(c.2) 
1 f~ 

The function Xpq and matrices ap and bpq are given by 

X~, =0 ,  Xzz = ~:(1 - C2)(tr + C) -1 (1 +kC) -~ e x p ( - 2 m f ' )  

Xpq = (1 -~cz) ~/z Sp+ Sq_ (X + C) -1 e x p [ - r n F +  i (p-  q) nq~ ], P#q 
(C.3) 
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where the functions C(~b) and F(~b) are defined in Appendix A of I; and 

al(~) ~ ( _ K ; ) _  I K(0~ )), a2(~b) = ( _  C ; )  1 C ~ ) )  
(c.4) 

Sp )q (iS;J), Sq+ ) bpq=((_l)p (_iS;+~)) ( ( - 1  

where Sp+ is the canonical factorization of Sp, and 

Sl(~) = K(~b), $2(~) = C(~b) 

K(~b) = K l(-~b) = [~c + C(~b)][1 + ~:C(~b)] 1 (C.5) 

~c = tanh [ (2E'1 - E1 )/k T] 

The rest of the derivation follows Sections 2 and 3 of I closely, with the 
result 

(~,,O~m,~ 

= M o M e x  p - ~__15 ~ . If  , &bl' &bk 

NKplp2(OI'q}2)Kp2p3(O2'~3)'"Kpkp'(Ok'q~I) ] (C.6) 

Kpq(qJ, O)=l_ei(r o) 1-S---~_(~b) (0) 

Similarly, the above Tc result is derived in the same way as in Sections 2 
and 3. And 

(ffl, Offm, n)T> Tc 

= (det ,~)v2 ~ d ~ . . -  d~k 
1 .} --n g 

X Hpl(Ol) Kplp2(~)l, ~)2) Xp2p3((92, (93)'" Kpk_12(Ok_ l, Ok) (C.7) 

Kpq(~, O)= 1 ~ o )  1 Sp_ (0) (0) 

Hp(q)) = --iXtp(q)) K_(~)  g+(q~) ' 

where Xpu = Xpq exp( - i ]p - q[ ~b). 
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